
JOURNAL OF COMPUTATIONAL PHYSICS 102,348-359 (1992)

On the Implementation of the GMRES(m) Method to
Elliptic Equations in Meteorology’

M~KDATKADI&Lu AND STEPHJXNMUDRICK

Department of Atmospheric Science, University of Missouri, Columbia, Missouri 652Il

Received July 5, 1990; revised June 17. 1991

In this paper we consider the relatively new preconditioned
generalized minimal residual method, restarted every m iterations
(GMRES(m)), for the solution of three-dimensional elliptic equations.
Large, sparse, non-symmetric matrices are involved. The particular
equation of interest is the quasi-geostrophic “omega” equation, often
used in meteorology to compute vertical motion. The GMRES(m)
method is tested with different preconditioners for the solution of two-
and three-dimensional elliptic equations. The method requires no
relaxation parameters and has no restrictions on the size of the 3D grid.
GMRES can be used for more types of matrices than other methods
such as SOR. Numerical results show that Jacobi preconditioned
GMRES(m) performs best for 3D and high resolution problems among
five different preconditioners tested, while ILU factorization of the
partial or whole matrix A, as a preconditioner, is good for 2D and low
resolution problems. The SOR preconditioners for the GMRES(m)
method, with optimal relaxation parameters, are not as efficient, and the
best choice for the relaxation parameter in SOR preconditioning is not
the same as the best choice for the simple SOR method. An algorithm
for using the preconditioned GMRES(m) method is presented.
0 1992 Academic Press. Inc.

1. INTRODUCTION

The rapid advances in all phases of dynamical-numerical
weather forecasting as well as in other areas of computa-
tional fluid dynamics have created more complex and larger
systems of equations. Therefore, more efficient techniques
for solving them are necessary.

In this paper, we consider a relatively new, efficient, and
robust general iterative procedure for solving large, sparse
systems of linear algebraic equations arising from an old
meteorological problem. Our purpose is to demonstrate
that the preconditioned generalized minimal residual
method (GMRES) can be useful as a general-purpose solver
for linear (elliptic) partial differential equations (PDEs).

Consider the system of equations

Ax=b, (1)
where A is a real, nonsinguiar n x n matrix, b is a given
vector of order n, and the value of the vector x of order n is

’ Contribution from the Missouri Agricultural Experiment Station.
Journal Series Number 11221.

sought. Apart from knowing the general method used to
simulate these problems, we will assume here that almost
nothing is known a priori about the mathematical proper-
ties of system (1). We do know, however, that our system is
large, sparse, and, in general, nonsymmetric.

Many scientific and engineering problems involve the
solution of such a set of linear equations at some stage of
analysis. The large, sparse system of linear equations, in our
case, arises after a second-order finite-difference discretiza-
tion of the quasi-geostrophic omega equation, which is used
for determining the three-dimensional (3D) distribution of
atmospheric vertical motion.

In general, there are two categories of linear equations
solvers: direct and iterative methods. For problems arising
from PDEs in 3D domains, direct methods can be too
costly. Advantages of iterative methods for solving large,
sparse systems lie in the fact that the matrix factorization of
direct methods is avoided, with consequent substantial
saving iri storage, and that an approximate solution of (1)
can be extracted in less than n (order of matrix) iterations,
thus saving computing time (e.g., [29]).

For systems such as (l), however, very efficient direct
methods also have been developed, which are called fast or
fast direct methods. They are usually based on the fast
Fourier transformations or the method of cyclic reduction
(e.g., [S;p. 2251). Some of these algorithms are utilized in
the software package FISHPAK [S, 311. However, these
techniques are limited primarily to systems which arise from
separable self-adjoint boundary value problems, and the
grid intervals must be determined according to the products
of a small number of prime numbers [S].

Most iterative methods for solving (1) are developments
of one of two basic ideas, namely Jacobi’s method, and the
conjugate gradient (CG) algorithm. For recent reviews, see
[9, 17, 353. According to Young [35], Wachspress [37],
Roache [27], and many others, elliptic PDEs have been
solved numerically by the very popular successiue over-
relaxation method (SOR), based on Jacobi’s method.
According to Haltiner and Williams [13, p. 1571 and
Boisvert and Sweet [5, p. 2251, SOR is also the most

0021-9991/92 55.00

Copyright 0 1992 by Academic Press, Inc.
AI1 rights of reproduction in any form reserved.

348

IMPLEMENTATION OF GMRES(m) 349

common method of solution used by meteorologists or fluid
dynamicists, because of its easy implementation.

The traditional SOR, however, is not an effective general
solution technique for a linear equations system [35, p. 363.
First, it requires the choice of the best over-relaxation coef-
ficient yopt to optimize the rate of convergence of the itera-
tion. In general, this is a very difficult problem. Theory for
finding yopt only exists for some special classes of coefficient
matrices [3, 17,26, 361. Even for special matrices, computa-
tion of the extreme eigenvalues of the matrix for optimal
convergence is usually as expensive as solving the linear
equation system. For the relatively well-defined problem of
the discretized elliptic equations, convergence can be
affected greatly by an obscure “optimum” parameter value
(e.g., [S, 13, 27, 331). Second, it needs a good initial
approximation to the solution of (1), which is not always
readily available. In addition to these, SOR is not
guaranteed to converge when A is a nonsymmetric matrix
(e.g., [12, p. 332; 261). Also, if diagonal elements of the
matrix are sufficiently negative, SOR will not converge
[13, p. 1663. Thus, it is apparent that SOR may not be the
most appropriate technique to use in the solution of
nonsymmetric, large, sparse linear systems. Moreover,
according to Navarra [22], standard techniques similar to
SOR that have been developed and used in meteorology
cannot be applied to large linear problems [18]. Some of
the other classical techniques used for elliptic boundary
value problems, such as Guassian elimination, point
iterative methods, are reviewed by Fulton et al. [7].

An extremely fast solution for (l), however, can be
extracted by multigrid methods, which combine some of the
classical iterative techniques with a subgrid refinement
procedure. Multigrid and related methods form a new class
of techniques which give the fastest known solution for a
significant category of matrix problems. For a recent review
on the multigrid methods see [7]. Fortran subroutines that
solve linear elliptic PDEs using multigrid iteration techni-
ques are utilized in a multigrid package MUDPACK by
Adams [11. Both FISHPAK and MUDPACK are readily
available from the National Center for Atmospheric
Research. However, not only do the properties of the
physical problem, the discretization, and the choice of the
appropriate relaxation in some cases lead to a degradation
of the performance of the multigrid methods, but also the
usage of MUDPACK is possible if and only if the data
satisfy the discrete compatibility condition. In other words,
according to MUDPACK Version 1.2, February 1989
documentation, the 2D or 3D domains data must be
provided on uniform grids that have the form
n~=p.2~+1,ny=q.2~+1,andnz=r.2~+1,wherep,q,
r, and k are positive integers (p, q, and r preferably smaller
than 5). For the problem we are considering here, our data
are not able to satisfy these conditions. We, therefore, still
need an algorithm which solves our problems to a desired

accuracy by a “reasonable” amount of work and which has
few restrictions.

Although the CG methods do not require either estimates
for the eigenvalues or an optimization parameter, the
methods have not been used extensively on systems arising
from the discretization of PDEs until recently. This is
presumably because they required more storage and they
were not significantly faster than SOR. Rapid improvements
in CG algorithms and sparse matrix techniques, however,
have made them more practical for use. (For more discus-
sion see, e.g., [6, 143.)

Although powerful CG algorithms exist for solving sym-
metric systems of linear equations, efficient methods for
solving large nonsymmetric systems are still rare [6,29].
There are three main approaches for the generalization of
CG for nonsymmetric problems. One approach is based on
transforming the nonsymmetric problem into a symmetric
positive definite one, then using the CG method to solve the
resulting system, called the normal equations (the CG itera-
tion applied to the normal equations (CGN)). The CGN
method is not always applicable in practice because it may
require a large number of iterations to converge [15, 311.
The biconjugate gradient method (BCG) is another one
which re-interprets the CG algorithm, using a recurrence
formula so that full orthogonalization is not necessary. The
BCG method also may fail to converge or break down in
many cases of practical interest [15, 31, 351. A recent
extension of BCG, the conjugate gradient squared method
(CGS), however, is found to be more efficient than BCG
[31]. The other generalization is GMRES. It is a residual
minimization method which basically results by the
introduction of an optimality property into the Arnoldi
algorithm. Like BCG it uses a Krylov subspace generated
by A, but with full orthogonalization [28-301.

According to Nachtigal et al. [21], among the many
parameter-free matrix iteration techniques proposed for the
solution of nonsymmetric systems of linear equations, the
GMRES method is the most robust one. They test what
they call the three leading methods, CGN, CGS, and
GMRES, on eight different classes of matrices, and they
found that GMRES always converged with a reasonable
number of iterations. An empirical comparison with
realistic computations is also given by Radicati et al. [25].
Their results also support those of Nachtigal et al.; GMRES
is very robust and more efficient than the other methods for
their physical problem. Games and Morales [lo] have
shown that GMRES is a robust and successful technique for
the solution of problems arising from oil-reservoir simula-
tions. In addition, Navarra [22,23] also pointed out that
Krylov subspace techniques, such as Arnoldi and GMRES
can be useful for solving large linear systems resulting from
the discretization of geophysical fluid dynamic problems.
For more comparative performances of GMRES with other
CG-like methods, see [28, 291.

350 KADIOCiLU AND MUDRICK

Therefore, we have chosen the recently introduced
iterative preconditioned GMRES technique in order to
evaluate its utility in a meteorological problem. Moreover,
since the theory and practice of GMRES and precondi-
tioned GMRES are not well understood, because only
limited numerical experiments have been done using them,
particularly for real problems modelled by PDEs [6, lo],
we will present and clarify some of the computational
aspects of this method. Also, a comparison between some of
the common preconditioners will be presented using
GMRES, in order to shed some light on choosing a “good”
preconditioner in real world applications.

In Section 2, the basis for our system of linear equations
is described. Some computational aspects of GMRES are
given in Section 3. In the following sections, tests for pre-
conditioned GMRES will be given to detect weaknesses,
display strengths, and explore robustness. Conclusions are
drawn for the choice between solvers in 2D and 3D in
Section 5.

2. MODEL PROBLEM AND
METEOROLOGICAL CASES

For weather forecasting, it is vital to be able to make
deductions about the vertical motion, which typically is of
the order of a few centimeters per second and which cannot
be measured directly. Upward motion produces precipita-
tion and plays an important role in the development of
fronts and storms, etc. One method of getting the vertical
motion involves inverting PDE using the output from a 3D
forecast model.

Our 3D, non-linear model employs 100 km (200 km) and
0.5 km (1.5 km) horizontal and vertical grid lengths, respec-
tively; an integration uses 54 x 62 x 30 (26 x 30 x 10) grid
points in the east-west, north-south, and vertical direc-
tions, respectively, in high resolution runs (and as numbers
in parenthesis indicate, in low resolution runs). The domain
of integration is a westeast re-entrant channel with rigid
horizontal and vertical boundaries:

where 1 is the nondimensional channel length.
We are required to solve elliptic, 3D partial differential

equations of the form

[

a* a2 1 a2 - - axZ+@+~(~)2a~* 1 w(x, y, z) = F(x, y, z), (2)

where F is a known forcing function, N2 is a known stability
parameter, and the appropriate boundary conditions (BCs)
are

w(x, y, 0) = w(x, y, 1) = 0

4x 4 1, y, z) = 4x9 y, z),

where c(is any variable.

We solve for w, the vertical motion. The vertical direction
is z, the height. An example of such an equation is the so-
called “quasi-geostrophic (QG) omega equation,” used to
obtain the vertical movement of air [133. Knowing the 3D
distribution of pressure at a given time, one can evaluate F.
The distribution of temperature with height, averaged
horizontally, is related to the stability of the atmosphere
with respect to vertical overturning, and is the basis for N2.
The greater the decrease in temperature per given height
interval, the more prone is that atmospheric region to
“instability” and the smaller is N2. Knowing F and N2, one
solves the equation for the three-dimensional distribution
of w. Regions of significant upward motion (w > 0) can lead
to cloud formation and precipitation. Equation (2) is
approximated by a system of linear equations evaluated on
a three-dimensional grid. For an internal grid point ijk,
away from any boundaries, our finite-difference approxima-
tion for (2), to second-order accuracy, is given by

+ &(w~k+,+wqk-l)
k

I+$+& > wiik = Ax* Ftjk. (3)
k

Equation (3), applied at each grid point, plus modified
equations incorporating the boundary conditions, are to be
inverted to obtain all wiik’s.

The forcing function Fvk can be written as the sum of two
terms, a “vorticity advection” and a “thickness advection”
term. We solve Eq. (3) twice, once with each term of the
forcing function; the two vertical motion solutions w are
added to get the total w. Each component of w provides
different information concerning the dynamics of the
weather system. Here we discuss only results from the
“vorticity advection” forcing term; the other forcing term
gives similar results.

Equation (3) requires BCs for w at all boundaries; we
have not discussed the northern and southern channel walls.
If we write w(x, y, z) = W(y, z) + w’(x, y, z), where n is the
east-west average and ()’ is the deviation, we can split
Eq. (3) into two elliptic equations, a 3D equation for
w’(x, y, z), which looks like (3), and a 2D equation for W, in
y and z. It turns out, from the BCs associated with the com-
plete set of atmosphere simulation equations used to derive
(3) the so called QG equations, that, at the northern and
southern walls, w’ = 0. Thus the 3D w’ equation has com-
plete BCs. For the 2D W equation we rederive an equation
for the east-west mean streamfunction, for which the BCs
are zero on the y and z boundaries. Solving this 2D elliptic
streamfunction equation allows us to obtain W; we then

IMPLEMENTATION OF GMRES(m)

600

750

700

650

600

550

J-GMRES
1’1.1’1.1‘1 t 1 1 C

0 1.1 1.2 l.3 1.4 1.5 1.6 1.7 1.6 I.9
f.31 , , , , , . , . , , ,

1.0 I . ! I.2 1.5 1.4 1.5 I.6 1.7 I.6 I . !

RELAXATION PARAMEJER RELAXATION PARAMETER
, 0 n I I v 11 11 ‘1 t I r I I1 I I1 I I7
5 10 IS 20 2s JO 55 40 45 50 55 60 5 t0 16 20 25 JO 35 40 45 SO 56 60

KRYLOV SUBSPACE DlMENSlON m KRYLOV SUBSPACE DIMENSION m

FIG. 1. Performance of the J-GMRES and the SOR methods as a function of the relaxation parameter y and Krylov subspace dimension m.

reconstruct W. In what follows, the “3D” and “2D” refer to 3. THE GMRES(m) METHOD AND
these two elliptic equations, rather than to Eq. (3). ITS IMPLEMENTATION

The forcing functions were obtained from three different
cases, representing three different types of atmospheric
situations. Cases 1 and 2 used typical mid-latitude values of
tropospheric and lower stratospheric stability for N’. (The
ranges of nondimensional values were 0.166 to 0.587 and
0.656 to 0.331, respectively.) Case 1 was very simple, with
one high pressure and one low pressure region super-
imposed on an idealized west to east mid-latitude flow.
(Details of the “QG” model used to generate the pressure
data which was used as input for the forcing functions can
be found in Mudrick [2O]; case 1 is labelled ZQG-INT in
that paper.) Case 2 used a similar west to east “basic state”
flow, but two “highs” and two “lows” were superimposed.
Their interaction produced a more realistic and complicated
evolution and hence a more complicated pattern of w.
Case 3 was similar in appearance (initially) to case 1 but a
lower value of tropospheric stability was specified; i.e., NZ in
Eq. (3) was reduced. The result was that the number of
iterations required for convergence of case 3 increased
significantly. This was due to wider range of values of N2,
increasing the asymmetry in the coefficient matrix (the
range of N* values were 0.053 to 2.418), compared to the
less nonsymmetric cases 1 and 2 as presented in Figs. 1 and
2 for both GMRES and SOR. The increase was much more
pronounced for SOR; see Fig. 1. In what follows, case 2
is emphasized; it represents more typical and realistic
atmospheric conditions than the other two cases.

Here we consider only the implementation of the
GMRES method. Following [S, 28-301, we try to sketch
the essential points of the algorithm. Theoretical details can
be found in these references.

The GMRES method basically minimizes a norm of the
residual at each step over a subspace. The subspace
increases with the number of iterations and, therefore, the
number of vectors requiring storage and operations will be
increased. Thus, we use the algorithm iteratively by
restarting it every m iterations. This restarted version of
GMRES is denoted as GMRES(m) by Saad and Schultz
[29]. For brevity, we mostly drop (m)‘s; from here on
GMRES represents the restarted version GMRES(m).

First we establish some notation. Matrices are denoted by
capital letters; vectors and scalars are denoted by lower case
letters. Column vectors of matrices, iteration steps, and
dimensions of vectors are indicated by subscripts, and
vector elements are shown in parentheses.

In brief, the GMRES method begins with an initial
approximate solution to Eq. (1) of x0 and initial residual
ro=b-AX*. It then computes an approximate solution
x~= x0 + zl, at the jth iteration, where z,. belongs to a
Krylov subspace q= span(r,, AYE, AJ-‘r,} whose
residual norm Ilb - AXE I/ is a minimum. Here (1. ((denotes
the Euclidian norm (i.e., llxll = (xf + xz + . . . + xz)“‘).

The method uses a modified Gram-Schmidt process (see

352 KADIOfiLU AND MUDRICK

[S]) in the Arnoldi iteration. An orthonormal basis
V nxm= cu 1 > ..., v,] (i.e., vTv,=O for if j and vTvj= 1 for
i=j) for the Krylov subspace is generated. The matrix A
can then be transformed into an upper-Hessenberg matrix
H mxm (i.e., h, = 0 if i > j + 1) through the relation

VkAd’mn=fL.,.

If we let ul=rO/llr,,//, p= I/rOj/, and let X denote the
m x m + 1 matrix obtained by appending to H,,, x m a row
with a single nonzero entry h,, l,m in column m, then the
Arnoldi basis matrices V, x m and Xm + i x m would satisfy

A(u , 9 *.., hJ=(~,,...~%7+,)~

or

j+l

Avj= 1 hvv, for l<j<m.
i= I

Since vi is known, we can start to generate nonzero
elements of Zkj and V,, x k, wherek=j+l.Forj=l tom,

h, = vf Au, for i= 1 toj,

then

where

Oj+l =rj/llrjl19

rj=Avi- i hgvi.
i=l

With these orthonormal bases and upper-Hessenberg
matrices an approximate solution xj = x,, + zj is extracted
from the solution of the least squares problem

min ~~b-A(x,,+zj)~~ =min /[Be, -Xkjyjll for-y,,

where e, is the unit vector e, = (1, 0, O)T, and zj = V, x j yj
at the jth iteration.

Hence, the GMRES iterate is given by x0 + V, x j yj, and
yj is the solution to the upper-Hessenberg least squares
problem. This problem is easily solved by factoring
YZ&= QkkRki, where Qkk is a product of Givens rotations
(see [S]) and Rki is an upper-triangular matrix, whose last
row is zero.

In this case, since Qkk is unitary (i.e., Q’Q = I), we have
min 11 g, - R, yj II for yi. This minimization is achieved by
back-solving the triangular system

where g is the transformed right-hand side, and here we

have removed the last row (j + 1) of R, and the last compo-
nent of g. This provides yj, and then an approximate solu-
tion xi for the linear equation system (l), and thus Eq. (3).

Note that Givens rotations also allow a very important
feature for practical GMRES implementation; the absolute
value of the last component of g, g(k), is just the norm of
the residual vector rj. The residual at every iteration,
therefore, can be determined without actually having to
compute x, [29].

Another important factor in the success of preconditioned
GMRES is the application of a preconditioning technique.
This transforms the original linear system into one which
has a better eigenvalue spectrum and thus requires fewer
iterations without greatly increasing the cost of each
iteration.

We thus solve the preconditioned linear system

M-‘Ax=M-‘b, (4)

instead of solving (1). This is discussed further in Sec-
tion 4.3.

The above discussion suggests the following algorithm for
general preconditioned GMRES implementations.

ALGORITHM. Iterative preconditioned GMRES(m).

1. Start:

(i) Choose x0 and a dimension m of the Krylov subspace.

(ii) Set-up a preconditioner matrix MZ A and factorize
it, if necessary (see Section 4.3).

2. Arnoldi process:

(i)Initialize; r. + M-‘(6 - Ax,), p + llroll, and
c(l)+P.

(ii) Gram-Schmidt orthogonalization:

Forj= 1 to m

if /I # 0, then vi t rjp, //?; otherwise STOP.

w+-M-‘Avj,andrj+-w

fori=l toj,h,cvfw,andrj+-r,-h,v,.

/?+Ilr,ll,andk=j+l
h, c p, and c(k) e 0.

3. Factor the upper-Hessenberg matrix Zkj; Q&%$, = R,.

4. Obtain residual norm of the approximate solution xi;
g(k) = Qkkck.

5. Make decision to form the approximate solution and
restart the algorithm:

if [g(k)1 >E and j<m, then (go to 2(ii)) next j.

if I g(k)1 < E or j = m, then first solve the least
squares problem min 11 gk - R, Yj II for Yj,
and then Xi + X0 i- vkj Yj.

if I g(k)1 < E, then STOP; otherwise x0 + Xj

and (go to step (2)) RESTART.

IMPLEMENTATION OF GMRES(m) 353

In summary, the above iterative GMRES algorithm
computes a new direction vector vi in the Krylov subspace
spanned by vi, A’- ‘ui and orthogonalizes it against
all the previous ones which have to be stored. After several
search vectors are computed by GMRES, a global mini-
mization problem is solved.

4. COMPUTATIONAL PROCEDURE AND
NUMERICAL RESULTS

In this section, we describe results that illustrate the
behavior and effectiveness of the iterative methods. The
numerical experiments described in this section were coded
in FORTRAN and were carried out on an IBM 3090-1705
scientific vector computer, using double precision. No out-
of-core memory was used. We optimized every loop that
could be vectorized by IBM 3090 vector facility (VF), a
hardware feature that provides significantly faster run time
for eligible code. No efforts, however, were made to start
iterations with a good initial guess vector; we used the initial
guess vector x0 = 0.

4.1. Storage

In the above iterative GMRES algorithm, three computa-
tional kernels may be easily identified: dot products and
vector updates, sparse matrix-vector products, and the
application of M - ‘. Potentially time consuming opera-
tions, such as the sparse matrix-vector product and the
implementation of the preconditioner matrix M, deserve
particular attention.

We first observe that these operations can be performed
by diagonals, since our matrices are regularly structured. In
general, matrices with regular sparseness patterns are stored
by their diagonals so that the matrix-vector product
involves contiguous memory locations and no indirect
addressing is necessary. Thus, instead of regenerating
nonzero elements of matrix A, only the nonzero diagonals
of matrix A are stored to allow efficient vectorization of
computational kernels [24]. The matrices generated by the
2D and 3D discretizations of a PDE on a regular grid have
sparseness patterns of this sort.

We therefore applied ITPACK/ELLPACK’s general
storage approach to store the entries of our matrices in the
coef-jcoef sparse nonsymmetric diagonal format. This
allows us to exploit the sparsity in the computations and it
allows some of the computational kernels to be efficiently
vectorized [24, 251. Here coef is a real array of size n-by-
maxj, which contains the nonzero diagonals of A in its
columns. The maxj is the maximum number of nonzeros per
row of A. Upper diagonals are top-justified and lower
diagonals are bottom-justified so that all rows have the
same length. The jcoef is an integer, n x maxj array
containing integers giving the distance (positive for upper

581/102/2-9

diagonals, negative for lower diagonals) of each diagonal
from the main diagonal.

We used live-point (for 2D) and seven-point (for 3D)
finite difference schemes to discretize our elliptic problems,
and the resulting matrices were live-banded and mainly
nine-banded. (In addition to the seven usual diagonals in
the 3D matrix, we have two extra bands due to the cyclic
boundary conditions; these bands, however, consist of a few
ones.) Doing this, the storage requirement for the coefficient
matrices turns out to be 10 x n instead of n x n, where for
our 3D problems, n is 5832 for 7800 unknowns in low
resolution, and n is 88,972 for 100,440 unknowns in high
resolution. (For more detail on storage and cost of com-
putations in GMRES see [29].) Thus, storing those few
nonzero entries of the matrix saves us from a large storage
requirement and I/O costs. The storage requirements for
GMRES methods, however, are substantially larger than
those of the SOR method, and it increases as m increases;
e.g., [10, 291. But, as will be shown below, a reasonably
small value of m = 15 turns out to be adequate for our
purposes; this reduces the storage requirements, even for
our high resolution problem, to reasonable values.

The code for sparse matrix-vector multiplication with the
above storage scheme is given by Oppe et al. [24, p. 2901.

4.2. Efficiency and Robustness

GMRES is effective for solving nonsymmetric linear
systems arising from the discretization of elliptic problems,
but little of convergence theory carries over to the non-
symmetric case (see [10,213, and Saad’s papers for more
discussion).

From widely varying and somewhat arbitrary test
procedures for stopping criteria, we chose to monitor
the Euclidian norm of the true residual vectors, Ilrjll =
II M ~ ‘(b - Ax,) 11. Each step of an iterative method is subject
to rounding error as well as the initial values of the
elements of A and b being subject to several other types of
errors, so it is necessary to check the accuracy of the final
solution by insertion into the original equation, e.g., [121.
Moreover, since the norm of the residual vector gives the
same weight to large and small error components over the
grid points, e.g., [22], the small norms of residual vectors
are not always the best indicators of small errors. We there-
fore conducted a few tests with different stopping criteria E
in order to extract a satisfactory approximate solution
without being affected by the limits of the machine preci-
sion. A stopping criterion of E = lo- l4 was thus chosen and
used for computations. The typical magnitude of the vertical
motion was lo-* or lo-‘. In all cases, the iteration process
was terminated either when the norm of the residual vector
was equal to or less than E, or after n steps for GMRES, and
1500 steps for SOR. Like the GMRES cases where we
monitored llri I(, which was estimated without explicitly

354 KADIOGLU AND MUDRICK

computing xj at every iteration step, for the convergence
criterion at each iteration of SOR we checked the norm of
the true residuals, /lr,-il = I/(&Ax,)lj, which was obtained
dynamically (i.e., computed during the relaxation sweep,
e.g., C71).

We will now discuss the results. Some aspects of the per-
formance of GMRES without any preconditioning, as well
as SOR, will be included as benchmarks. Results from the
three meteorological cases are displayed in Fig. 1 for the
SOR solutions (the “V” shaped curves) and for the Jacobi
preconditioned GMRES (J-GMRES, see Section 4.3).
These results are for the 3D equation from the low resolu-
tion problem; they show the number of iterations needed for
convergence and the CPU time required. The upper x axis
of Figs. 1 and 2 shows the relaxation parameter y for the
SOR method while the lower x axis shows the Krylov sub-
space dimension m for the J-GMRES method. Figure 1 thus
compares the performance of the J-GMRES and the SOR
methods for our three cases as a function of y and m for the
3D low resolution problem. Figure 2 presents similar
results, but only for case 2, for both the 2D and 3D equa-
tions, for the high resolution problem. Note that the dashed
lines refer to CPU time; the solid ones refer to the iterations
required for convergence.

According to Ashkenazi [3, 51 and many others, the
SOR method is one of the simplest to use of the iterative
methods. The simplicity of the concept and the ease of
programming and operation are, for many users, the
essence of SOR. However, as seen from Figs. 1 and 2, the
automatic application of a random y, without due precau-

20 SOR vs J-GMRES HIGH RESOLUTION 30 SOR vs J-GMRES HIGH RESOLUTION

J-GMRES

RELAXATION PARAMETER
u 1 0 I I 1

10
&LO” S”;SPACE ;;“ENSlOf.tn

3s

9

8.5

6

7.5

7

6.5

6 2

5.5 $

S
3 4.5 c

4

43 3.5 c,

3

2.5

2

1.5

1

0.5
D

tion, could greatly worsen the rate of convergence. The
figures also show that y has to be known to at least three
digits to guarantee optimum performance, a knowledge
which is difficult to obtain in real applications. This
sensitivity to y is a well-known feature of SOR, as pointed
out by Wachspress [37, p. 2821. Thus, it is clear that the
effectiveness of the SOR method depends strongly upon the
selection of an optimization parameter which is not readily
available.

The GMRES algorithm can be seen from Figs. 1 and 2 to
be far less sensitive to the choice of m than is SOR to the
choice of y. Figure 1 makes it clear that SOR shows sen-
sitivity to y and to the varying structure of the coefficient
matrix A, while the number of iterations for J-GMRES,
both with varying m, and A, is relatively constant. This was
mentioned in Section 2.

For the high resolution problem, Fig. 2 shows that the
SOR method requires less CPU time only when y is close to
yap,. With m chosen - 15, for both the 3D high resolution
problem (Fig. 2) and for all three cases for the 3D low
resolution problem (Fig. 1), J-GMRES is seen to be
competitive with SOR, unless extra effort is expended
to find yO,*.

The rate of convergence of the classical iterative methods,
such as SOR, depends on the resolution, with higher resolu-
tion resulting in slower convergence [7]. We thus checked
the convergence rates for the GMRES methods. Form = 15,
GMRES without preconditioning and for the low resolu-
tion 3D problem required 5.97 s to converge, using 168
iterations, or 0.0355 s/iteration (Fig. 5). The 3D high

4250

4000

5750

5500

3250

3000

2750

2 2500

q 2250

f$ 2000

1750

1500

1250

1004

750

500

250
r I. 1. I. 1. I. us0

0 1.1 1.2 I.5 IA f.5 I.6 1.7 I.8 1.9 2.0 ‘1.
RELAXATION PARAMETER 1 1 I 1 I 1

10 &LOV SUZBOSPACE 6fE~S10?m 55

-c 800

- 750

-700

- 650

-600

FIG. 2. Performance of the J-GMRES and the SOR methods as a function of y and m. Dashed lines show the total CPU time, and solid lines show
the number of iterations.

IMPLEMENTATION OF GMRES(m) 355

resolution problem required 244.16 s to converge, using 608
iterations, or 0.402 s/iterations (Fig. 71, more than a tenfold
increase in time/iteration, similar to the ratio of the increase
in resolution. The J-GMRES method, also with m = 15,
gives better times, but shows a similar increase in time/
iteration for the 3D versus the 2D problem (Figs. 5 and 7).
In addition, the convergence rate in general decreases as the
Krylov subspace dimension m increases.

4.3. Preconditioning and Preconditioners

A suitable preconditioner is crucial in obtaining a rapid
convergence of CG-type methods, and choosing good pre-
conditioners for general matrices is an important research
issue [lo, 111. According to Nachtigal et al., [21], the
convergence rate of GMRES depends on its eigenvalues;
thus, by applying a preconditioner to GMRES we wish to
cluster the eigenvalues in the right half of the complex plane
and/or to improve the distribution of eigenvalues, thereby
significantly accelerating the convergence of the method
[31, 341.

Preconditioning will increase the amount of computa-
tion. We have to compute matrix vector products M -‘Au,
besides Auj for each iteration step. Thus, in choosing a pre-
conditioner we must select between methods which usually
perform a large number of cheap iterations or a small num-
ber of expensive iterations [24]. The CPU computation
time in seconds includes both the time required for the
implementation of the preconditioner and the total itera-
tions required for convergence.

We will try some of the basic preconditioners [111, and
a relatively new class, incomplete LU factorization (ILU) of
the matrix A [191. The ILU factorization of A, M= LU,
where L and U are lower and upper triangular matrices,
respectively, is based on a modified Gaussian elimination
procedure without any pivoting. For the 2D and 3D coef-
ficient matrix A, the preconditioner A4 for the GMRES is
chosen to be:

ILU factorization of the entire matrix A (ILU or
ILU-GMRES), and

Since the desired accuracy can often be obtained by more
than one method, a major factor in deciding upon an
appropriate iterative procedure is the cost of computation,
as pointed out by Wachspress [37, p. 121. In general, an
approximate preconditioner M for Eq. (1) is any “simple”
matrix that approximates the “essential structure” of A.
Thus, one effective class of preconditioner is based on the
matrix M - ’ being a good approximate inverse of A in the
sense that M ~ ‘A z I.

The basic preconditioners are, however, mostly based on
the matrix splittings of A, which is based upon writing

In this section, we briefly describe our choices for a A = D + L + U, where D is the diagonal, and L and U are
preconditioning operator M, and their effects on the cost of strictly lower and upper triangular matrices, respectively.

LU factorization of only the tridiagonal of matrix A
(3B or 3B-GMRES).

computation. We did not want to spend too much effort in
finding ways to construct an effective preconditioner. Based
on previous studies [10,241, we used left preconditioning in
all numerical experiments. (For more discussion on
preconditioning of iterative methods see [4] and its
references.)

20 S-GMRES LOW RESOLUTION 30 S-CURES LOW RESOLUTION

125

120

115

110

g j 105

F 100

E - 95

90

85

80

75 0
0 0.2 0.4 0.6 0.8 1.0 J.2 I.4 1.6 1.8

RELAXATION PARAMETER

I
425 -

400 -

375 -

350 -

325 -

.soo-

275 -.

loo,.,.,.,.,.,.,.,.,, c
0.0 0.2 0.4 0.6 0.6 LO 1.2 1.4 l.6 1.

RELAXATION PARAMETER

FIG. 3. Performance of the SOR preconditioned S-GMRES method as a function of m and y. Arrows show yopt values.

356 KADIOCiLU AND MUDRICK

They are chosen to be:

Jacobi (J-GMRES): M=D

Gauss-Seidel (G or G-GMRES): M = D + L

Successive over-relaxation (S or S-GMRES):

M=y-‘D+L.

With the choice y= 1, the S-GMRES reduces to
G-GMRES.

In using SOR as a PDE solver, one needs an estimate of
the optimal relaxation parameter yopt. One cannot,
however, calculate yopt in advance, as discussed in Section 1;
in general, we have to rely on “trial and error” to find a good
value (see Figs. 1 and 2). Computing of yopt for each
different problem can require significant extra work. Using
the SOR method to solve the equations similar to (3) on
naturally ordered 2D and 3D grids (i.e., grid points were
numbered from left to right and bottom to top), we mostly
tried over-relaxation values; 1 < y < 2.

We find, however, that the convergence rates as a func-
tion of y are quite different depending on whether SOR is
used as a PDE solver or whether

250

225

125

1100.

1000

900

600

5 700

600

500

400

300

200

30 LOW RESOLUTION 30 LOW RESOLUTION

IMPLEMENTATION OF GMRES(m) 357

fO.Si r*

io is 2b is 5b j5 4b 4; 5’0 t+5

KRYLOV SUBSPACE DIMENSION m

J, . ,’ , , , , , , . , . ,
5 10 15 20 25 30 35 40 45 50 55

KRYLOV SUBSPACE OMENS/ON m

FIG. 5. Same as Fig. 4, but for 3D low resolution.

20 HIGH RESOLfJTlON 20 HIGH RESOLUTION

‘. -.
-0.’

-0•....,,
.’ 1.9

l . l .
l .

l .
l .

l .
l .

l .
‘0

-0

l . l -.

T ~. I - .

KR:LOV S”;SPACE ;;“ENSIO=i m

10.5

lo- .* .*
..-~;~~==--* .‘*,

9.5-
‘.

a* .*
.*

l -.
9

I

.*
l .*-

6.5 ,.**-
l *

6

7.5

- ro
KR:OV S”;PACE &ENSICti m

,

.

FIG. 6. Same as Fig. 4, but for 2D high resolution.

358 KADIOCLU AND MUDRICK

30 HIGH RESOLUTION 30 HIGH RESOLUTION

-. ---....
750 ‘:, l .

f+l
-0.. .* -=..

700
l
.

-0..
l .

l ...
l .

0.
..==

.* .a
l .-•

.* .* . ..= .==
1.855* -......-.. I 3 500- .’ l .*-

.-
0,

e .* .* .-’
450- .- .-

.- .-
s

.* .* iz :d.-
l.~*..=“==

..-•
l ==..... . .*-----

54.........’
3 400-p B

300 - ‘.y< ,-,-‘-”
350- .~‘=-

FIG. 7. Same as Fig. 4, but for 3D high resolution.

This is different from the 2D low resolution problem; com-
pare Figs. 4 and 6. In the 3D high resolution problem, the
superiority of the Jacobi preconditioner becomes more
clear; see Fig. 7. Since J-GMRES appeared to be the best
all-around preconditioner we tested, it was used as a com-
parison to SOR in Figs. 1 and 2. Figure 7 also shows that,
although ILU-GMRES requires less iteration steps to
converge, it requires more CPU time per iteration than does
the GMRES method without preconditioning.

In the low resolution 2D and 3D problems, the required
CPU time shows a definite increase with the subspace
dimension (Figs. 4 and 5). For the high resolution 2D and
3D problem, the S-GMRES cases tend to behave in a
similar manner, while the other cases are not as subspace
dimension dependent (Figs. 6 and 7). These results seem
inconsistent. We also note from the left-hand portion of
these figures, that as the matrix dimension and the grid size
increases different preconditioners require almost the same
number of iterations but different CPU time per iteration.

The reason behind these may be given by two factors, as
indicated in the IBM 3090 VF compiler output from our
runs: First, the length of the vectors in the 2D low resolution
problem is too short for effective vectorization, and
second, in the preconditioner algorithms (except Jacobi),
dependence of successive vectorial operations on the same
vector elements somewhat inhibits the vectorization of the
loop operations.

While most of the kernels of the preconditioned GMRES
algorithms are vectorizable, the incomplete factorization
and the forward and back solvers in the sparse systems of
the preconditioners are recursive operations that cannot be
vectorized efficiently. Many alternative types of precondi-
tioners could therefore be considered. Among the others,
Aschraft and Grimes [2] developed the wavefront techni-
que to vectorize ILU and symmetric SOR preconditioners
for the CG method. It remains to be seen if the application
of a wavefront technique to our ILU preconditioner would
produce a trade-off of its high iteration number with very
fast operations, and thus a reduction in CPU time for our
3D high resolution problem.

Our results indicate that the vectorization is more
effective and efficient only if the vectors are relatively large,
as in the 3D problems. Otherwise, vectorial operations are
done only in a scaler manner on the IBM 3090-1705.

5. CONCLUSIONS

In this paper we consider a relatively new and general
iterative procedure for solving a large, sparse linear system
of equations, specifically, 3D elliptic equations. Although it
is difficult to make any definite statements as to an overall
“best” method, we proceed by checking the relative merits of
the various iterative methods.

First, it is well known that the SOR method requires
properties such as diagonal dominance or positive delinite-

IMPLEMENTATION OF GMRES(m) 359

ness of the systems of equations, and sometimes symmetry,
for the theoretical properties of the method to be valid.
Second, while a Krylov subspace dimension is used in
GMRES(m), it has been found that its value is far less criti-
cal than the relaxation parameter for SOR. Indeed a large
enough Krylov subspace dimension, such as m = 15, seems
adequate, if not ideal, for a range of different problems.
Third, the rate of convergence obtained has generally been
found to be very good with preconditioned GMRES(m).
Like SOR, for GMRES(m) methods the CPU time per grid
point required to converge to an approximate solution is
found to be dependent on grid resolution. Overall,
GMRES(m), a method not yet widely used, at least in the
meteorological community, is better than the SOR,
especially for a large system of equations. It is simple to
implement, and is virtually parameter free, as well as robust.

Other techniques have limitations. For example, MUD-
PACK and FISHPACK are limited by the requirement of
“quantized” grid numbers in some or all directions. Such
restrictions have not been found to be necessary for
GMRES(m). For problems which can lit the required grids,
these other techniques may be superior to GMRES.

With respect to the choice of a good preconditioner, it
seems that the simplest gives the cheapest and best results,
especially for large systems. For 2D and low resolution
problems, the ILU preconditioners may be preferred to the
others. The S-GMRES preconditioner, however, is not
recommended. For small and easier 2D problems the low
storage methods, such as the optimal SOR method, are still
worth using, The iterative preconditioned GMRES(m)
algorithm, as a general PDE solver, is a viable alternative
for large, sparse, and nonsymmetric linear systems arising
from fluid dynamics problems,

Further research for improving the efficiency of precondi-
tioned GMRES(m) could involve choosing a better initial
guess vector and a good restart procedure and improving
the preconditioners by adapting wavefront or similar
techniques.

ACKNOWLEDGMENTS

The authors express their gratitude to Dr. Ronald B. Morgan of the
Department of Mathematics for his continuous and enthusiastic support
and to Wayne L. Churchill of Computing Services for his excellent
assistance throughout the development of this work at the University of

Missouri-Columbia. Our thanks also go to the reviewers for their many
invaluable suggestions.

REFERENCES

1. J. C. Adams, Appl. Malh. Comput. 34, 113 (1989).

2. C. C. Ashcraft and R. G. Grimes, SIAM J. Sci. Stat. ~ompuf. 9, 122
(1988).

3. V. Ashkenazi, in Large Sparse Sets of Linear Equations, edited by
J. K. Reid (Academic Press, New York, 1971) p. 57.

4. 0. Axelsson, BIT 25, 166 (1985).

5. R. F. Boisvert and R. A. Sweet, in Sources and Development of Mathe-
matical Software, edited by W. R. Cowell (Prentice-Hall, Englewood
Cliffs, NJ, l984), p. 200.

6. I. S. Duff, in Sources and Development of Mathematical Software,
edited by W. R. Cowell (Prentice-Hall, Englewood Cliffs, NJ, 1984),
p. 165.

7. S. R. Fulton, P. E. Ciesielski, and W. H. Schubert, Mom. Weather Rev.
114, 943 (1986).

8. G. H. Golub and C. F. VanLoan, Matrix Compufafions (Johns
Hopkins Univ. Press, Baltimore, MD, 1989).

9. G. H. Golub and D. P. O’Leary, SIAM Rev. 31, 50 (1989).

10. S. Games and J. L. Morales, in Mathematics for Large Scale
Computing, edited by J. C. Diaz (Dekker, New York, 1989), p. 265.

11. L. A. Hageman and D. M. Young, Applied Iterative Methods
(Academic Press, New York, 1981).

12. W. W. Hager, Applied Numerical Linear Algebra (Prentice-Hall,
Englewood Cliffs, NJ, 1988).

13. J. G. Haltiner and R. T. Williams, Numerical Weather Prediction and
Dynamic Meteorology (Wiley, New York, 1980).

14. M. R. Hestenes and E. L. Stiefel, J. Res. Nat. Bur. Stand. 49,409 (1952).

15. W. D. Joubert, in Proceedings, Copper Mountain Conf on Iterative
Methods, University of Colorado, April I-5, 1990 (unpublished).

16. C-Y. J. Kao and L. H. Auer, Mont. Weather Rev. 118, 1551 (1990).

17. D. R. Kincaid and L. J. Hayes, Iterative Methods for Large Linear
Systems, edited by D. M. Young and T.-Z. Mai (Academic Press,
New York, 1990) p. 293.

18. R. S. Lindzen and H.-L. Kuo, Mont. Weather Rev. 97, 732 (1959).

19. J. A. Meijerink and H. A. van der Vorst, Math. Comput. 31, 148 (1977).

20. S. E. Mudrick, J. Atmos. Sci. 39, 2414 (1982).

21. N. M. Nachtigal, S. C. Reddy, and L. N. Trefethen, in Proceedings,
Copper Mountain Conf on Iterative Methods, University of Colorado,
April 1-5, 1990 (unpublished).

22. A. J. Navarra, Comput. Phys. Commun. 53, 321 (1989).

23. A. J. Navarra, J. Comput. Phys. 69, 143 (1987).

24. T. C. Oppe, W. D. Joubert, and D. R. Kincaid, NSPCG User’s Guide
Version 1.0, CNA-126, April 1988, Univ. of Texas at Austin, Center for
Numerical Analysis (unpublished).

25. G. Radicati, Y. Robert, and S. Succi, J. Comput. Phys. 80, 489 (1989).

26. J. K. Reid, in Large Sparse Sets of Linear Equations, edited by
J. K. Reid (Academic Press, New York, 1971), p. 231.

27. P. J. Roache, Computational Fluid Dynamics (Hermosa, Albuquerque,
New Mexico, 1976).

28. Y. Saad, SIAM J. Sci. Stat. Compul. 10, 1200 (1989).

29. Y. Saad and M. H. Schultz, SIAM J. Sei. Stat. Comput. 7, 856 (1986).

30. Y. Saad, SIAM J. Sci. Stat. Comput. 5, 203 (1984).

31. P. Sonneveld, SIAM J. Sci. Stat. Compur. 10, 36 (1989).

32. P. N. Swarztrauber and R. A. Sweet, Trans. Math. Software 5, 352
(1979).

33. K. E. Torrance, J. Fluid Mech. 95, 477 (1979).

34. H. A. van der Vorst, .I. Comput. Phys. 44, 1 (1981).

35. D. M. Young, Compur. Phys. Commun. 53, 1 (1989).

36. D. M. Young, Iterative Solution of Large Linear Systems (Academic
Press, New York, 1971).

37. E. L. Wachspress, Iterative Solution of Elliptic Systems (Prentice-Hall,
Englewood Cliffs, NJ, 1966).

